
Fortran Quick Reference/Cheat
Sheet

Remember: FORTRAN 77 and below is case sensitive.
Fortran 90 and above is NOT case sensitive.

Introduction
Important things to note are:

• Fortran can perform array arithmetic operations.

• Spaces are ignored?

• Fortran is a compiled language which is compiled into
an executable

• Blue text indicates a feature which is available from
Fortran 90 onwards.

• Purple text indicates a feature which is available from
Fortran 95 onwards.

• Red text indicates a feature which is available from
Fortran 2003 onwards.

Terminology
Statement - An instruction which is either executabe or
nonexecutable.
Construct - A sequence of statements ending with a
construct terminal statement.
Function - A procedure that returns the value of a single
variable.
Procedure - Either a function or subroutine. Intrinsic
procedure, external procedure, module procedure, internal
procedure, dummy procedure or statement function.
Subroutine - A procedure that is invoked by a CALL
statement or defined assignment statement. It can return more
than one argument.

Special Characters
’ (Apostrophe) Editing, declaring a string
" (Quotation

Marks)

Declaring a string

* (Asterisk) Comment lines.
: (Colon) Editing.
:: (Double

Colon)

Separator.

! (Exclamation) inline comment.
/ (Slash) Skip a line in a fmt statment?
; (Semicolon) Separates Statement on single source

line. Except when it is in a character
context, a comment or in line 6.

+ (Plus) Arithmetic operator.
& (Ampersand) Line continuation charachter.(Must be

in line 7 of fixed format F77. For F90
can be anywhere after the line.

Concepts and Elements

Concept Statements
Module Module

Contains
Private
Public
End Module
Use

Interface Block Interface
Module Procedure
End Interface

Derived data type Derived type
Private
Sequence
End Type

Subprogram Function
Subroutine
Entry
Contains
Return

Input/Output Backspace
Close
Endfile
Format
Inquire
Open
Print
Read
Rewind
Write

Flow Control

Group Statements
IF IF

ELSE IF
ELSE
ENDIF

CASE SELECT CASE
CASE
END SELECT

Do/Do while DO
DO WHILE
END DO
EXIT
CYCLE

WHERE Construct WHERE
ELSEWHERE
END WHERE

Order of Statements and Execution
Sequence

PROGRAM, FUNCTION, SUBROUTINE,

MODULE or BLOCK DATA statement
USE statements

IMPORT statements
FORMAT
and
ENTRY
Statements

IMPLICIT NONE

PARAMTER State-
ments

IMPLICIT Statements

PARAMTER and
DATA Statements

Derived-type Definitions, In-
terface Blocks, Type Decla-
ration Statements, Statement
Function Statements and Spec-
ification Statements.

DATA Statements Executable Constructs
CONTAINS Statement

Internal Subprograms or Module Subprograms
END statement

Statements Allowed in Scoping Units

Scoping
unit →

Main
Prog

Module3Block
Data

External
subprog

Module
subprog

Internal
subprog

Interface
Body

USE Yes Yes Yes Yes Yes Yes Yes
ENTRY No No No Yes Yes No No
FORMAT Yes No No Yes Yes Yes No
DATA Yes Yes Yes Yes Yes Yes No
CONTAINS Yes Yes No Yes Yes No No
Derived

data type

definition

Yes Yes Yes Yes Yes Yes Yes

Interface

block

Yes Yes No Yes Yes Yes Yes

Executable

statement

Yes No No Yes Yes Yes No

Statement

function

statement

Yes No No Yes Yes Yes No

Misc1 Yes Yes Yes Yes Yes Yes Yes

Notes

1. Miscellaneous declarations are PARAMETER
statements, IMPLICIT statements, type declaration
statements, and specification statements such as
PUBLIC, SAVE, etc.

2. Derived type definitions are also scoping units, but they
do not contain any of the above statements, and so have
bot been listed in the table.

3. The scoping unit of a module does not include any
module subprograms that the module contains.

Data types

Type Declaration Conversion
INTEGER INT(arg, kind)

IDINT(arg, kind)
IFIX(arg, kind)

REAL REAL(arg, kind)
FLOAT(arg, kind)
SNGL(arg, kind)

CHARACTER INTEGER:: i
CHARACTER(len=10) :: ch
....
WRITE(ch,*) i

COMPLEX CMPLX(x,y, kind)

Type Declaration Statements

NON OVERRIDABLE

Declares a bound procedure cannot be overridden in a
subclass of this class.

PROCEDURE,NON OVERRIDABLE::pr

ALLOCATABLE

Declares an array is allocatable.
REAL,ALLOCATABLE,DIMENSION(:)::a = -1

DIMENSION

Declares the rank and and shape of an array.
REAL,DIMENSION(-7:10,3:10)::matrix = -1

EXTERNAL

Declares that a name is a function external to a pro-
gram unit.

REAL,EXTERNAL::fun1

INTENT

Specifies the intended use of a dummy argument.
REAL,INTENT(IN)::ndim

INTRINSIC

Declares that a name is a specific intrinsic function
REAL,INTRINSIC::sin

NOPASS

Declares a bound procedure cannot be overridden in a
subclass of this class.

PROCEDURE,NOPASS::add

OPTIONAL

Declares that a dummey argument is optional.
REAL,OPTIONAL,INTENT(IN)::maxval

NON OVERRIDABLE

Declares a bound procedure cannot be overridden in a
subclass of this class.

PROCEDURE,NON OVERRIDABLE::pr

PARAMETER

Defines named constant..
REAL,PARAMETER::PI=3.141593

PASS

Declares that the derived data type variable used to
invoke a bound procedure will be passed to its as its
first calling argument.

PROCEDURE,PASS::add

POINTER

Declares that a variable is a pointer.
INTEGER,POINTER::ptr

PRIVATE

Declares that an object is private to a module.
REAL,PRIVATE::internal data

PROTECTED

Declares that an object in a module is protected,
meaning that it can be used but not modified outside
the module in which it is defined.

REAL,PROTECTED::x

PUBLIC

Declares that an object is private to a module.
REAL,PUBLIC::cir=2.54

SAVE

Declares that an object is private to a module.
REAL,SAVE::sum SAVE

TARGET

Declares that an object is private to a module.
REAL,TARGET::val1

VOLATILE

Declares that a value of a variable might be changed
at any time by some source external to the program.

REAL,VOLATILE::vol1

Derived Data Types

Arrays
• Arrays can be up to seven dimensions.

• Fortran 90 allows the use of arithmetic array operations
without the use of loops.

• Unsubscripted arrays are passed by reference.
Subscripted arrays are passed by value?

• Arrays are stored in column major format. This is not
the same as C which is stored in row major format.

Terminology
Automatic Arrays -
Adjustable Arrays
Assumed-shape Arrays -
Deferred-shape Arrays -
Allocatable Arrays -
Array Pointers -
Assumed-size Arrays -

Declaration
Explicit Shaped Arrays

Can have the attribute of ALLOCATABLE.
INTEGER, DIMENSION (10) :: arr a = -1 - A rank one array
having ten elements starting at subscript 0? It is good practice
to intailize your array with a value. in this case -1.

REAL, DIMENSION(-2:9,0:5) :: arr b =-1 - A rank two
array with 12 elements in the first dimension starting at
subscript -2. This is different form C where array subscripting
always starts from zero.

Array Constructors

vector= (/1,2,3,4/)
vector= (/ (M,M=1,10) /) - using an implied do loop.
array=(/ ((M,M=1,10),N=1,3) /)

Array Selection

arr(i,j) Subscript for a single value
arr(i,*) Column i of a two dimensional array.
arr(i:k,j:l) A 2D subarray of columns i to k, rows j to

l.
arr(i:k:m) A 1D array starting at subscript i and fin-

ishing at subscript k with a stride of m.
arr1(arr2) The elements of Array2 subscript the ele-

ments in Array1.

Functions for Determing Array Properties

ALL(Mask,dim) Determines if all values are true in Mask
along dimension dim.

ANY(Mask.dim) Determines if any value is true in Mask
along dimension dim.

ALLOCATED(Array) Returns true if array is allocated.
COUNT(Mask,Dim) Returns the number of true elements in

Mask along dimension Dim.
MINLOC(arr) Returns smallest element of entire array.
MINVAL(arr,dim) Returns smallest element in dimension

of array.
MAXLOC(arr) Returns largest element of entire array.
MAXVAL(arr,dim) Returns largest element in dimension of

array.
UBOUND(arr,dim) a)Returns the upper bound of the sub-

script for the the array b)If the array ar-
gument is an array selection then result
is the number of elements.

LBOUND(arr,dim) a)Returns the lower bound of the sub-
script for the the array b)If the array
argument is an array selection then re-
sult is 1.

SHAPE(arr,dim,mask)Returns a one dimensional integer array.
With each element being the extent of
the dimensions of the source array.

SIZE(arr,dim) Returns the total number of elements in
the array.

SUM(arr,dim,mask) Calculates the sum of selected elements
in the array. Similar to total() in IDL.

Array Manipulation Functions

CSHIFT(Array,shift, Dim)

Circular shift on a rank 1 array or rank 1 section of
higher rank arrays.

PACK(arr,mask,vec)

Takes some or all elements from an array and packs
them into a one dimensional array, under the control of
a mask.

RESHAPE(source arr,shape,pad,order)

Constructs an array of a specified shape from the ele-
ments of a given array.

TRANSPOSE(matrix)

Takes the transpose of a 2d array (i.e matrix) turning
each column into a row.

UNPACK(vec,mask,field)

Takes some or all elements from a one dimensional ar-
ray and re-arranges them into another, possibly larger
array.

MERGE(Tsource,Fsource,Mask)

Merges two arrays based on a logical mask.

EOSHIFT(Array, Shift,Boundary,Dim)

End of shift of a rank 1 array or rank 1 section of a
higher-rank array.

MATMUL(Matrix 1, Matrix 2)

Performs mathematical matrix multiplication of the ar-
ray arguments.

PRODUCT(arr,dim,mask)
Multiplies together all elements in an entire array, or
selected elements from all vectors along a dimension.

SPREAD(source arr,dim,ncopies)
Replicates an array in a additional dimension by making
copies of existing elements along that dimension.

TRANSFER(source,mold,size) ??

Returns either a scalar or rank 1 array with a physical
representation identical to that of SOURCE, but inter-
preted with type and kind of MOLD. Effectively this
function takes the bit patterns of SOURCE and inter-
prets them as though they were the type and kind of
MOLD.

Miscellanous Array statements

FORALL (I = 1:N, J = 1:N) H(I, J) = 3.14
Allows elements of the array to worked on in a parrallel
processing environment
name: FORALL (I = 1:N, J = 1:N)
H(I, J) = 3.14
END FORALL

Structures/Derived Data Types

Unlike arrays structures allow different data types to be
packaged together into one entity. They are similar to
Structures in C and Derived Data types in Fortran.

Type Conversion Functions

AIMAG(Z) Imaginary part of a complex number.
AINT(R,kind) Returns R truncated to a whole number.
ANINT(R,kind) Returns the nearest whole number to R.
CEILING(R,kind) Returns the smallest integer greater than

R.
CMPLX(X,Y)kind) Returns a complex value as follows. 1)

If X is complex, then Y must not exist,
and the value of X is returned. 2) If X
is not complex, and Y does,nt exst, then
the returned value is (X,0). 3) If X is
not complex and Y exists, then returned
value is (X,Y).

CONJG(Z) Returns the complex conjugate of a com-
plex argument.

DBLE(A) Converts value of A to double-precision
real. If A is complex, then only the real
part of A is converted.

IBITS(C) ???
INT(A,kind) Returns a truncated A If A is complex

then only the real part is converted.
LOGICAL(L,kind) Converts the logical value L to the spec-

ified kind.
NINT(R,kind) Returns the nearest integer to the real

value A.
REAL(A, kind) Converts A into a real value. If A is com-

plex, it converts the real part only.
SIGN(A,B) Returns the value of A with the sign of

B.

Intrinsic Mathematical Procedures

ABS(A) Returns the absolute value of A. If complex

returns
√
real2 + imag2

ACOS(X) Returns the arcosine of X.
AIMAG(Z) Returns the imaginary part of the complex

argument Z.
ASIN(X) Returns the arcsine of X.

ATAN(X) Returns the arctan of X.
ATAN2(Y,X) Returns the arctan of Y/X in the range of

−π to π
COS(X) Returns the cosine of X.

COSH(X) Returns the hyperbolic cosine of X.
DIM(X,Y) Returns X-Y if > 0, otherwise returns 0.

Both X and Y must be of the same type
and kind.

DOT PRODUCT(Vector 1,Vector 2)

Performs the mathematical dot product of
the two rank 1 arrays.

DPROD(X,Y) Returns the double precision product of X
and Y.

EXP(X) Returns ex.
FLOOR(A,kind)

Returns the largest integer ≤ A.
LOG(X) Returns the natural logarithm of X

LOG10(X) Returns the logarithm of X to the base of
10.

MATMUL(Matrix 1, Matrix 2)

Performs mathematical matrix multiplica-
tion of the array arguments.

MAX(A1,A2,A3) Returns the maximum value of A1,A2 etc.
MIN(A1,A2,A3) Returns the minimun value of A1,A2 etc.
MOD(A,P) The remainder of A/P.

MODULO(A,P) Returns the modulo of A.
RANDOM NUMBER(harvest)

Returns psudorandom number(s) from a
uniform distribution of 0 to 1. ’harvest’
may be either a scalar or an array.

RANDOM SEED(size,put,get)

Performs three functions 1)Restarts the
peudorandom number generator in RAN-
DOM NUMBER 2) Gets information
about the generator. 3) Puts a new seed
into the generator.

SIN(X) Returns the sine of X.
SINH(X) Returns the hyperbolic sine of X.

SQRT(X) Returns the square root of X.
TAN(X) Returns the tangent of X.
TANH(X) Returns the hyperbolic tangent of X.

Kind and Numeric Processor Intrinsic
Functions
BIT SIZE(I) Returns the number of bits in integer I.
DIGITS(X) Returns the number of significant digits in

X in the base of the numbering system.
Which is in most cases is 2. If you want
the number of significant decimal digits us
PRECISION(X).

EPSILON(R) Returns a positive number that is almost
negligible compared to 1.0 of the same type
and kind as R. R must be a real. Essen-
tially the result is the number that when
added to 1.0, produces the next number
representable by the given KIND of a real
number on a particular processor.

EXPONENT(X) Returns the exponent of X in the base of
the the computer numbering system.

FRACTION(X) Returns the mantissa or fractional part of
the model representation of X.

HUGE(X) Returns the largest number of the same
type and kind as X.

KIND(X) Returns the kind value of X.
MAXEXPONENT(R)

Returns the maximium exponent of the
same type and kind as R.

MINEXPONENT(R)

Returns the minimum exponent of the same
type and kind as R.

NEAREST(X,S) Returns the nearest machine-representable
number different from X in the direction of
S. The returned value will be of the same
kind as X.

PRECISION(A)

Returns the number of significant decimal
digits in values of the same type and kind
as A.

RADIX(A) Returns the base of the mathematical
model for the type and kind of I or R. Since
most modern computers work on a base of
2. This number will almost certainly be 2.

RANGE(X) Returns the deciaml exponent range for val-
ues of the same type and kind as X.

RRSPACING(R) Returns the reciprocal of the relative spac-
ing of the numbers near R.

SCALE(R,I)

Returns the value x ∗ bI , where b is the base (Which is
almost always 2).

SELECTED CHAR KIND(String)

Returns the kind number associated with the character
input argument.

SELECTED INT KIND(I)

Returns the kind number for the smallest integer kind
that can be represent al integers n whose values satisfy
the condition ABS(n) < 10∗∗I. If more than one kind
satisfies this constraint, then the kind returned will be
the one with the smallest decimal range. If no kind
satisfies the requiremnt, the value -1 is returned.

SELECTED REAL KIND(P,A)

Returns the kind number for the smallest real kind that
has a decimal precison of at least P digits and an ex-
ponent range of a least A powers of 10. If more than
one kind satisfies the the constraint, then the kind re-
turned will be the one with the smallest decimal preci-
sion. If no real kind satisfies the requirement, 1) If the
requested precision is not available a -1 is returned. 2)
If the requested precision is available a -2 is returned.
3) If neither is available a -3 is returned. Both P and
A must be integers.

SET EXPONENT(X,I)

Returns the number whose fractional part is the part is
the fractional part of the number, and whose exponent
part is I. If X is 0 the the result is 0. X must be real

SPACING()

Returns the absolute spacing of the numbers near X
in the model used to represent real numbers. If the
absolute spacing is out of range, then this function re-
turns the same value as TINY(X). The result is use-
ful for establishing convergence criteria in a processor-
indepenent manner.

TINY()

Returns the smallest positive number of the same type
and kind as X.

Intrinsic Character Functions

ACHAR(I,kind) Returns character in position I of the
ASCII collating sequence.

ADJUSTL(string) Adjust string left, inserting trailing blanks
and removing leading blanks.

ADJUSTR(string) Adjust string right, removing trailing
blanks and inserting leading blanks.

CHAR(I,Kind) Returns character in position I of the pro-
cessor collating sequence associated with
the specified kind.

IACHAR(C) Returns the te position of the character
argument in the ASCII collating sequence.

ICHAR(C) Returns the position of the character in
the processor collating sequence.

INDEX(String,Substring,Back)

Locates one substring in another, i.e re-
turns position of Substring in characters.

LEN TRIM(String) Returns the length of a character string
without any trailing blank characters.

LGE(Str a,Str b) Tests whether a string is lexically greater
than or equal to another string, based on
the ASCII collating sequence.

LGT(Str a,Str b) Tests whether a string is lexically greater
than another string, based on the ASCII
collating sequence.

LLE(Str a,Str b) Tests whether a string is lexically less than
or equal to another string, based on the
ASCII collating sequence.

LLT(Str a,Str b) Tests whether a string is lexically less than
another string, based on the ASCII collat-
ing sequence.

NEW LINE(C) Returns the newline character for the
KIND of the input character string.

REPEAT(Str,n copies)

Concatenate several copies of a string.
SCAN(Str,Set,Back)

Scan a string for any one of the characters
in a set of characters. Returns the posi-
tion of the left most character of str that
is in set.

TRIM(Str,SubStr,back)

Returns the string without any trailing
blank characters.

VERIFY(Str,Set,Back)

Verify that a set of characters contains all
the characters in a string. Returns the
first character in the string that does NOT
appear in the set.

Input/Output
OPEN(unit,file, iostat)

Opens a file for I/O.There are too many options
which this statement has for the space here.

READ(unit,fmt, iostat),var

Reads a file in a variable. There are too many op-
tions which this statement has for the space here.

WRITE(unit,fmt,iostat),var

Writes a variable to a file. There are too many op-
tions which this statement has for the space here.

CLOSE(unit,iostat,err,status)

Closes a particular file unit.
FLUSH(unit)

Flush output buffers to disk.
WAIT(unit)

Wait for asynchronous I/O to complete.

UNIT=5 for stdin,
and UNIT=6 for stdout

Pointers
POINTER Attribute must be used in variable declara-

tion.
TARGET Attribute must be used in variable declara-

tion.
var 1 => var 2 Assigns the pointer from variable 1 to vari-

able 2.
ASSOCIATED(var 1)Returns a logical result depending on

whether the pointer has been associated.
NULL(MOLD)?? Returns a disassociated pointer of the same

type as MOLD if present. If MOLD is not
present, the pointer type is determined by
context. MOLD is a pointer of any type.
Its pointer association status may be un-
defined, disassociated, or associated. This
function is useful for initializing the status
of a pointer at the time it is declared.

NULLIFY(var 1) Causes pointer to become disassociated. If
the pointer is not assigned to anything it is
good programming practice to have them
disassociated. Always initialize as pointer
iwth NULLIY or with the pointer assigned

ALLOCATE(var 1) Dynamically provides storage for pointer
targets and allocatable arrays.

Miscellaneous Functions
PRESENT(A)??? Returns true if optional argument A is present.

Debugging techniques
1. Switch on all error testing that can be provided by the
compiler.
2. Use interface blocks to trap a very common error which is
parameter mismatch between calling and called subroutine.
3. Check for mixed-mode arithmetic.
4. Putting in simple print statements.

Good programming Practise

1. Use meaningful variable names.
2. Use IMPLICIT NONE.
3. Echo all input values.
4. Create a data dictionary in each program that you write.
Including the physical units used.

5. Specify constants with a much precision as your computer
will support.
6. Initialize all variables.
7. Always print the physical units associated with any value.

Useful Links
www.fortran.com

comp.lang.fortran - Usenet group.

This card was created using LATEX. Released under the GNU
general public license. $Revision: 0.118 $, $Date: 27/02/2009 $.
To contact me regarding improvements/mistakes on this sheet or
to download the latest version please follow the links from:
http://www.BenjaminEvans.net

www.fortran.com

	Introduction
	Terminology
	Special Characters
	Concepts and Elements
	Flow Control
	Order of Statements and Execution Sequence
	Statements Allowed in Scoping Units
	Data types
	Type Declaration Statements
	Derived Data Types
	Arrays
	Terminology
	Declaration
	Explicit Shaped Arrays

	Array Constructors
	Array Selection
	Functions for Determing Array Properties
	Array Manipulation Functions
	Miscellanous Array statements

	Structures/Derived Data Types
	Type Conversion Functions
	Intrinsic Mathematical Procedures
	Kind and Numeric Processor Intrinsic Functions
	Intrinsic Character Functions
	Input/Output
	Pointers
	Miscellaneous Functions
	Debugging techniques
	Good programming Practise
	Useful Links

